Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus.

نویسندگان

  • William J Rice
  • Aleksandra Kovalishin
  • David L Stokes
چکیده

CopA from the extreme thermophile Archaeoglobus fulgidus is a P-type ATPase that transports Cu(+) and Ag(+) and has individual metal-binding domains (MBDs) at both N- and C-termini. We expressed and purified full-length CopA as well as constructs with MBDs deleted either individually or collectively. Cu(+) and Ag(+)-dependent ATPase assays showed that full-length CopA had submicromolar affinity for both ions, but was inhibited by concentrations above 1muM. Deletion of both MBDs had no effect on affinity but resulted in loss of this inhibition. Individual deletions implicated the N-terminal MBD in causing the inhibition at concentrations >1muM. Rates of phosphoenzyme decay indicated that neither the dephosphorylation step, nor the E1P-E2P equilibrium accounted for this inhibition, suggesting the involvement of a different catalytic step. Alternative hypotheses are discussed by which the N-terminal MBD could influence the catalytic activity of CopA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of a copper pump suggests a regulatory role for its metal-binding domain.

P-type ATPases play an important role in Cu homeostasis, which provides sufficient Cu for metalloenzyme biosynthesis but prevents oxidative damage of free Cu to the cell. The P(IB) group of P-type ATPases includes ATP-dependent pumps of Cu and other transition metal ions, and it is distinguished from other family members by the presence of N-terminal metal-binding domains (MBD). We have determi...

متن کامل

Reaction Cycle of Thermotoga maritima Copper ATPase and Conformational Characterization of Catalytically Deficient Mutants†

Copper transport ATPases sustain important roles in homeostasis of heavy metals and delivery of copper to metalloenzymes. The copper transport ATPase from Thermotoga maritima (CopA) provides a useful system for mechanistic studies, due to its heterologous expression and stability. Its sequence comprises 726 amino acids, including the N-terminal metal binding domain (NMBD), three catalytic domai...

متن کامل

Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus.

Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine-rich N-terminal domain of 130 amino acids in addition to a C-terminal copper binding domain with a conserved CXXC motif. The N-termi...

متن کامل

Mechanism of Metal delivery and binding to transport sites of Cu+-transporting ATPases

CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu across cellular membranes. CopA contains at least two metal binding domains, a regulatory N-terminal Metal Binding Domain (N-MBD) and an occlusion/coordinating metal binding site in the 6, 7 and 8 transmembrane segments. Previous studies showed that the presence of millimolar concentration of Cys...

متن کامل

Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.

P1B-type ATPases transport heavy metal ions across cellular membranes. Archaeoglobus fulgidus CopB is a member of this subfamily. We have cloned, expressed in Escherichia coli, and functionally characterized this enzyme. CopB and its homologs are distinguished by a metal binding sequence Cys-Pro-His in their sixth transmembrane segment (H6) and a His-rich N-terminal metal binding domain (His-N-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 348 1  شماره 

صفحات  -

تاریخ انتشار 2006